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ABSTRACT

The development and evaluation of new theoretical and numerical approaches
for strongly nonlinear finite element analysis are reported, The element
technology uses interior nodes to create higher order in-plane displace- ]
ment forms needed for nonlirear strain calculation. Several sotution pro-

cedure types are discussed, based on an updated total Lagrangian formulation.

Progress with this appruach and current capability levels are discussed.

ATR 70R T AT T oAy An merrarey TN

B T ' RERS Rrimanar "

rovr,on A, - s+ e (AFSC) :

f T : o is |

Pt e R SN ]
. - !

Nt e
PRI TH&J‘:‘ J. LT

Chi i1i
ef, Techaicul Inforwation Division

trme e v er Pwwes Tt T

T et 1IN



B a'ru. MBE _ -0 ﬁza WUV ACCEIIICN NO. 3. NEGIFILK T8 CATALOG NuMBER
WAEORK-TR- 81 AD-A108 477 |
|

A TATLE (andt Subtitle)

1 . PERFORMING ORG, REPOKT NUMBER

UNCLASSIFIED
WU R TY CLASSIFICATION OF THIS PALT (Whan [lera | nirend)
REPORT DOCUMENTATION PAGE HEFORS, CORIL TG EM

|'S. TYPE OF REPORT & PERIOD COVERED
JAN 79 - JUN 81

Nonlinear Structurdl Analysis Final Report

7. AUTHON(e) %, CONTRACY OR GRANT WUMBER(S)

Dr. Robert E. Jones F49620-79-C-0057
9. PERFORMING ORGANIZATION NAME ANC ADORESS 0. PROGRAW ELEMENT. PRGJECT. TASK

Boeing AGI‘OSP&CE Company AREA & WORK UNIT NUMBERS

P. 0. Box 3999 230781

Seattle, Washington 98124 61102F
V1. CONTROLLING OFFICE NAME At1D ADDRESS 12. REPORY DATE

AFOSR/NA Sept. 1981

Bldg. 410 . 13. NUMBER OF PAGES

77

M&mm Contesiling Oftice) | '3. SECURITY CL ASS. (af this report)

Unclassified
3. DECL ASSIFICATION/DOWNGRADING
SCHEDUYLE

| S —
6. DISTRIBUTION STATEMENT rof thie Report)

Approved for public release, distribution unlimited.

-

17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, il difierent frem Repert)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side ! necessary and identily by bleck number)

Finite Element Beams
Nonlinear Analysis Computer Modelina
Euler Angles Convergent Solutions

Lagrangian Formulation
20. ABSTRACT (Continue on reverse tide I{ necessary and identily by bleck mumber)

~The development and evaluation of new theoretical and numerical approaches for
strongly nonlinear finite element analysis are reported. The element
technology uses interior nodes tc create higher order in-plane displacement
forms needed for nonlinear strain calculation. Several solution procedure
types are discussed, based on an updated votal Lagrangian formulation.
Progress with this approach and current capability levels are discussed.

DD 50", 1473  woimion oF 1 noV 63 13 OBsOLETE Unclassified
SECURITY CLASMIFICATION OF TWiS PAGE (When Ders Entered) !

¢ \l/ /’/; /(J

v e v

et i

Inkand s s



TABLE OF CONTENTS
Section ' Page

i ' 1.0 INTRODUCTION ]

| 2.0 TECHNICAL DISCUSSION 3
2.1 Goals and Approach of Current Research 3 ‘

2.2 Progress of Current Research 6

2.3 INlustrative Numerical Results 17

2.4 Suggested Further Work 22

3.0 REFERENCES 32

APPENDIX A  Static Perturbation Path Parameter Al
APPENDIX B  Euler Angle Theory for Beam Element B1 :
APPENDIX C Summary of Proposal for Contract a1 '

F49620-79-C-0057

it Lk o




1.0 [NTROOUCTION

This report contains a summary of progress on AFOSR contract F49620-79-C-0057
on nonlinear finite element analysis and outlines suggested further research.
Section 2.1 begins by describing the deficiencies in the state-of-the-art in
nonlinear analysis as they relate to and have motivated the present research.
Section 2.2 discusses methodology and progress in the current contract in
detail. Section 2.3 presents results for several large deflection problems
for beams, addressing features of the nonlinear beha.ior which illustrate

both the advantages and the deficiencies of the developed methods. Section
2.4 suggests areas for future studies related to the work. Appendices A and B
provide technical details on two areas of development which are briefly dis-
cussed in Sections 2.1 and 2.2, but for which the reader may desire
clarification. Appendix C reproduces portions of the proposal (Reference.S) j
for the present contract, for convenient reference in the present context.

The goal of the present research has been the development and evaluation of
improved displacement-method finite element approaches for the analysis of
structural problems with geometrical nonlinearities. The initial work in
this subject was done by Haftka, Mallett and Nachbar in reference 1. Further
work by Jones (References 2, 3, 4) followed along the lines outlined in
reference 1. Reference 3 concluded that an improved approach could be devel-
oped through new finite element formulations coupled with a stepwise non-
linear solution procedure. Reference 5 proposed and outlined the development
of these new approaches, which have been pursued in the present AFOSR-
sponsored research and are reported herein. 3

e

There are three technical areas associated with geometrically nonlinear
inite ~lement analysis which require investigation in order to achieve the
desired research results. These are introduced briefly here in order to put L
into perspective more detailed discussions in the sections which follow.
First, it is required to derive a new type of finite element which is
numerically well behaved when the total nonlinear deformations are retained
in analysis. This requirement addresses the role of the nonlinear contribu-
tions to the stresses as major controliing factors in the equilibrium state.




With conventional elements, retaining these stresses results in serious
errors with consequent incorrectly convergent, or, frequently, divergent
solution calculations. Secondly, it-is required to develop geometrical
representations of the deformations which avoid any cumulative 1nconsistenby
between the deformations and the displacements. Such errors cannot be elimi-
nated by iteration. Finally, it is required to develop improved stepwise
solution procedures, with residual load iteration, which are convergent for
large load steps. The presence of large residual loads caused by the
nonlinear deformations often causes failure of conventional solution
procedures. These three requirements adgress proven deficiencies in the
application of conventional finite element methods to strongly nonlinear
analysis, as manifested by both unacceptable inaccuracies in problem solu-
tions and serious difficulties in obtaining convergent stepwise solution
processes.
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2.0 TECHNICAL DISCUSSION

This section discusses the goals of the present resecarch, progress on the
current contract, and recommended areas for further research.

2.1 Goals and Approach of Current Research

The physical problems which have motivated the current research primarily
involve those structures in which the nonlinearly induced stresses due to
large rotations are critical in determining the correct equilibrium state of
the structure. Examples of such problems include such difficult problems as
the buckling of shells and the pcstbuckling action cof panels, and also simple
cases such as the stretching of cables and bending of beams. In all of these
cases it is necessary to include a complete and accurate description of the
nonlinear stress field within the structure in order to correctly address the
equilibrium problem. In general, finite element analysis has encountered a
great deal of difficulty in doing this. The difficulties arise because
conventional element formulations retaining complete nonlinear stress calcu-
lations encounter several fundamental problems. One of these problems, and
that which requires the development of new types of elements, is that the
nonlinearly induced stresses include physically unrealistic components which
become "locked" within the elements, unremovable except by major reduction of
the displacement magnitudes. This causes excessive structural stiffness and
results in inaccurate problem solutions. Another prohlem is that, due to
including the nonlinear stresses, the solution procedure is required to deal
with very large residual loads in the iterative portion of the calculation
process. It is usually found that such large residual loads cause solutiun
divergence or excessively slow convergence and very iarge computational
costs. This difficulty requires the development of solution procedures which
are improved in character and tailored specifically to problems having large
nonlinear stresses.

An additional difficulty is that in problems of the types under discussion

there are generally large rotations and corresponding deformations which are
computed in a stepwise manner during the solution process. Total deformations
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are often determined by summing increments. This approach can cause cumula-
tive errors in the solution which are not correctable through the residual
load iteration process. There are.several sources of such errors. The first
and that most commonly encountered in conventional approaches is a cumulative
error in the strains caused by the determination of the strain through step-
wise incrementation. This error results from linearization of the strain
increments, and is usually quite large. A second source of error occurs in
cases having mcderately large rotations in three dimensions. The revresenta-
tion of such three-dimensional rotations through incrementation of cartesian
rotations will cause both incorrect total roalinear strains and also a cumula-
tive error in the orientation of the structure in spaca. The error will make
the strains inconsistent with the true total displacement and rotation state,
and hence is not recoverable through residual load iteration. This rotation
problem must be solved in order to develop finite element procedures which are
applicable to such problems as the combined 1ateral and torsional nonlinear
deformation of beam structures. Another type of error occurs in total Lagran-
gian formulations, and results fram an exchange of roles between the bending
and manbrane disglacanents when the rotations become large.

The above discussions point clearly to three primary technical goals for the
current research. The first is the development of new element types which are
formul ated specifically for including complete nonlinear strains in finite
element calculations. The beam and shell elements under developnent in this
research accomplish this through the use of interior modes to incorporate
higher order axial (beam) and membrane (plate, sheil) displacement functicns.

The second primary goal is to avoid unrecoverable cumulative error, that is,
any type of error which is unrecognized, and hence uncorrectable, by the
residual load iteration process. The cumulative errors due to incrementing
element strains in a stepwise procedure have beer avoided by camputing the
total nonlinear strains directly, rather than by incrementation. A total
Lagrangian formulation with updating is used to accomplish this. The cumula-
tive error in the structural rotation state due to summing cartesian rotation
increments has beer avoided through a rigorous three-dimensional rctation
description. In this approach, the rotation state, both total and
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incremental, is represented by three sequenced angles, called Euler angles,
which uniquely define the total rotation state for arbitrarily large muticns.
This appears to be a new approach in finite element formulations.

The third primary goal is technically distinct from the finite element
research of the work, but was necessary in order to achieve numerical verifi-
cations of the element technology. It is the development of solution proced-
ures which are rapidly convergent despite the numerical difficulties inherent
in the solution process for strongly nonlinear problems. Several approaches
have been investigated in this regard. The initial approach used an
internally nonlinear stepwise solution procedure with iteration of the resid-
“ual load state after each load step. The nonlinear stepwise capability was i
based on the static perturbation procedure (References 6, 7, 8). Additional %
means to convergence acceleration were found necessary in conjunction with 3
the static perturbation method: these are discussed in Section 2.2. Ulti- ?
mately, this approach was found inadequate (except for small load steps and 4

moderately small displacements), and a method utilizing adaptive modification
of the structural stiffness matrix (the BFGS method, reference 10) was suc-
«cessfully implemented in place of the static perturbation method.

The total set of technical goals for the present research include, i addition i
to the three primary goals described above, a number of important secondary

items. These have been grouped into two categories. The first category

relates to the matter of suitable finite element strain displacement egua-

tions. It is required that the basi¢ rules governing finite element displace-

ment states and strain-displacement relations be followed: the element can

undergo rigid body displacements and constant strain states; large rigid body b
motions must not cause element deformations. These requirements are met by '
using cartesian-based elemental coordinate systems. Other requirements

relate to the degree of approximation of the nonlinear portions of the strain.
displacement aquations and the accurate representation of geametry for shell
elacnents. It is necessary to keep the strain-displacement equations simple
and amenable to numerical processing as large displacements and rotations
develop. In particular, it is required to avoid the camplexity of a nonlinear
shell strain displacement formulation of the intrinsic coordinate type. The ;
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use of the Marguerre type of strain formulation, together with element 1ocal
coordinate system updating, has fulfilled these requirenents. The second
category relates to generality of solution procedures. It was originally
intended that the solution procedures developed in this work be applicable to
an extended set of of problem types including buckling (bifurcation, 1imit
points and snap through), and also that the solution procedure be extendable
to the case of dynamic response calculations where strong nonlinearities are
present. The static perturbation approach appeared to have the potential to
satisfy these requirements. The difficulties in achieving convergence of
nonlinear stepwise solutions with the static perturbation method, and the
adoption of the BFGS method for this purpose, have necessarily modified the
original plan to develop a solution procedure with direct applicability to
both dynamics and buckling problems.

2.2 Progress of Current Research

In the work accomplished to date the theoretical development of the finite
element formulations for the new type of %wo-dimensional and three-dimens-
jonal beam elements has been completed and the Euler angle theory for both the
beam elements and the plate and shell elements has been developed. By calcu-
lations, it has been demonstrated that the type of element formulation under
development is completely successful in handling the large stresses inherent
in the large rotation nonlinear state. A technically advanced set of solution
procedure algorithms has been developed, refined and verified through numeri-
cal studies using a two-dimensional bean element code. The solution proced-
ures appear to be rapidly convergent for large step sizes and strona nonline-
arities. A number of technical difficulties, some expected and some unantici-
pated, have been encountered. The discussion which follows attempts to
describe the chronology of ‘the work accomplished and its present status,
covering each task and difficulty in some detail.

The current research began with the development of the element technology for
a curved beam element whose initial shape and subsequent deformation are
constrained to take place in a single plane. This has been called the 2-D
beam element (see Appendix C, Section 2.2 and Figure 1). The element has five

et etk

e A b s 8 e e

i

s ano s

s e kb, s




gl W P — T T
W ————

nodes: nodes 1 and 5 are the end nodes; ¢, 3, and 4 are internal. In its
present form, the nodes are equally spaced along the length of the element.
Nodes 1, 3 and 5 each have three freedoms, includinj the axial displacement,
the lateral or bending displacement, and the bending rotation. Nodes 2 and 4
have only the axial displacement %reedom. This unique nodal and freedom
arrangement provides axial displacements which are quartic functions and
bending displacements and rotations which are guadratic. By this means accur-
ate stress and strain representations are obtained despite the rotations
present in strongly nonlinear problems (see discussion in Appendix C, Section
2.2, Stability Elements). The development of this element encountered sev-
eral technical difficulties related to its unusual nodal and freedom arrange-
ment and in regard tc geometrical updating. For example, in performing a
rotational updating transformation, the calculation of the transformed values
of the axial freedoms at nodes 2 or 4 requires including in the transformation
the potentially large bending displacements at these nodes. Since the bending
displacement is not an available freedom at rodes 2 and 4, its value must be
generated by interpolaticn using the bending displacement values at nodes 1, 3
and 5. Related difficulties are encountered in transforming the loading on
the beam element. The coupling together of the axial and bending displace-
ments (or loads) in such updating transformations is the means by which any
small angle approximations used in the nonlinear strain equations are removed
by updating. This has implications regarding the performance of solution proce-
dures, the calculation of residual loads, and the criteria controlling updating.

The next step in the research was the development of solution procedures
appropriate to the implementation of the 2-D beam element. The solution
procedure development was based on the static perturbation method of the
second order (the static perturbation method is discussed in Appendix C,
Section 2.2, Nonlinear Step Static Soluticn Procedure, and also in a mathe-
matical derivation starting on page C30 of Appendix C. See also Appendix A,
page Al, for a discussion of path parameters). In tkis formulation, the
structural displacements are expressed as a second degree Taylor series in a
path parameter. The path parameter is the Taylor series argument. In the
initial development of this theory the path parameter was the load itself.




That is, the structural displacements were expressed as a seccnd order Taylor
series in the load. This approach is computationally simple and provides
excellent results for many types of problems. It presumes that the displace-
ments are well behaved functions of the load, and in particular that displace-
ments cannot occur without corresponding changes in the value of the load.
Hence this approach would be unsuitable for buckling problems, in which dis-
placements can occur at constant or nearly constant load.

A proof-of-concept computer program was written to implement this procedure
in conjunction with the 2-D beam element. The program was designed to have
maximum adaptability to future extensions of element technology. In numeri-
cal work with this computer program, the surprising result was found that for
certain problem types (large rotations with very small axial stresses) the
second order static perturbation procedure often displayed poor convergence
or even divergence unless the applied load steps were made small. In an
attempt to improve this situation the static perturbation procedure was
extended to include the third degree Taylor series terms. This extension led
to a great deal of complexity, both in the area of theory development and also
in coding work, and produced disappointing results. In numerical work it was
found that the second order approach consistently performed better than the
substantially more complex third order formulation. A considerable amount cof
study was done to explain this unexpected result and to understand more fully
the behavior of the second and third order formulations.

It was determined that the second order procedure provides corrective dis-
placements which primarily reduce errors in the axial force equilibrium
state. The third order process, on the other hand, primarily provides correc-
tive bending displacements in order to reduce errors in the bending (lateral)
load equilibrium state. The static perturbation approaches accomplish these
corrections through a tyne of residual load evaluation, which is made using
only the start-of-step geometry and deformation description of the structure.
Since this start-of-step state is approximate in its ability to forecast end-
of-step residual loads, a corresponding approximation occurs in the static
perturbation corrective displacement values. In contrast, corrective
displacements computed by the stepwise iterative process, using rigorous,
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end-of-step evaluated residual loads, are able to respond exactly to the

nonl inearity-induced errors which have occurred during a given load incre-
ment. In geametrically nonlinear analysis, axial equilibrium corrections are
cruciglly important, because the axial forces combine with the rotations to
produce potentially large bending equilibrium errors. Hence the second order
static perturbation, despite its approximate nature, is beneficial to solu-
tion coavergence. 9On the other hard, errors in bending displacement predic-
tion can be crucially damaginn to solution convergence, because of their
potential to cause large rotations, nonlinear arial strains, and hence large
axial force errors. Hence the approximations in the bending displacement
corrections computed by the third order static perturbation process appear
unacceptable. It was concluded for this reason that conventional static
perturbation of the second order is superior to the third order procedure for
geometrically nonlinear analysis of "thin" structures (beams, plates,
shells).

At this point in the research it was relt worthwhile to extend the static
perturbation approach to a more general type of formulation, in which the
Taylor series path parameter is deformation-related (Appendix A discusses the
path parameter in detail). A useful path parameter of this type is similar to
the structural strain enerqy function, taking the form

s? = A&T KaQ

where S is the path parameter, K is the tangent stiffness matrix, and aQ is
the incremental displacement of any load (cr iteration) step. This type of
path parameter has the advantage of applicability to buckling problems. It
was felt that calculations using this particular type of path parsmeter might
shed some light on the overall behavior of the static perturbziion process in
the types of problems under study. This particular extension again led to a
great deal of complexity, in both theory and numerical approach. Numerical
work with this approach was again disappointing, and showed tihat for problems
in which the displacements are well behaved functions of the load, the energy-
based path parameter formulation does not provide any advantages over the
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load-based path parameter approach. Only in cases in which the 1load-displace-
ment relationship is poorly behaved, as occurs in buckling problems, would the
generality of this approach be advantagesus.

In order to obtain improved solution procedure performance, recourse was made
to methods developed during previous experience (prior AFJSR contract, refer-
ences 3, 4) in nonlinear analysis of beams and platas. In this work it had :
been concluded that the axial force equilibrium errors are primarily a result g
of bending displacements which take place without perfectly "matched" axial

displacements. The axial force errors are usually very large. Together with

the rotations they cause large error loads acting on the relatively flexible

bending displacements. This, in turn, causes further bending displacement

errors with even larger axial force errors. Thus, the errors in the axial

forces have a tendency to magnify themselves and cause divergent calcula-

tions. In the previous work it was found that a successful method of accele-

rating convergence is to perform residual load iterations for the single i
purpose of "matching" the axial displacements to the bending displacements, ;
thus removing the axial load equilibrium errors. This is implemented by a

solution procedure employing "alternate-freedom" iterative corrections. In

this procedure, the first incremental displacement of a load step includes all

of the freedoms of the finite element model. The next increment is the first

iteration. It only includes the axial/membrane freedoms, and thereby relaxes

the axial/membrane force errors. The next increment is the second iteration;

it includes all freedoms. The third iteration includes only the axial/mem-

brane freedoms, and so on. It has been found that, despite element curvature

and prior deformation, in each axial/membrane-freedom-only iterative correc-

tion the axial/membrane force equilibrium errors are significantly reduced.

This prevents these errors from causing, in the subsequent iteration, large

bending displacement errors. This type of solution procedure always accele-

rates convergence, and often achieves convergent solutions where other

approaches encounter divergence. The alternate-freedom-iteration procedure

was added to the static perturbation method to achieve a combined process

having the benefits of both procedures. The extension was accomplished such

that both the all-freedom and the axial/membrane freedom iterations are per- ,
formed by the static perturbation procedure. 2
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In calculations done with this method, it was found that the bending mament
residual loads tended to remain excessive after the axial/membrane and trans-
verse load residuals were reduced to relatively small values. Consequently,
the alternate-freedom-iteration procedure was modified to include both the
axial/membrane freedoms and the rotational freedoms. In this form the solu-
tion procedure appeared optimum.

The above-disrussed solution procedure functicned well for problems with
moderate displacements and rotations, but diverged when very large displace-
ments (e.g., half the length for a simnle end-loaded cantilever) were compu-
ted. To prevent the divergence, a procedure called a "line-search" was
jmplemented. In this method, the amplitude of a computed displacement incre-
ment is scaled, or optimized, in such a way as to minimize the solution
errors, as measured by residual load magnitudes, which correspond to the total
displacements at the end of the increment. This avoids tiie use of a camputed
increment where that increment would increase, rather than decrease, the
residual loads. The implementation involves evaluating a measure of the
error, e.g., the root-sun-square of the residual loads, for several ampli-
tudes of the computed increment, and interpolating on the amplitude to obtain
a minimum error. “he interpolation includes the axial/membrane/rotational
iteration corrections. This approach performed well, particularly when
employed with judicious updating of the structural stiffness matrix in order
to assure that the "shape" of the camputed increment is a good one. If the
stiffness matrix is not updated, it sometimes occurs that the relative magni-
tudes of the incremental values of the structural freedoms, i.e., the "shape"
of the increment, is sufficiently inaccurate that even a near zero amplitude
of the camputed increment will increase the error level. In this case the
line-search fails, and an accurate problem solution is not obtained.

To avoid this difficulty, a method based on stepwise modification of the
structural stiffness mat-'x can be used. Such an approach involves stepwise
modifications of the s’ i “iness matrix such that the matrix to be used for the
next increment is the une which, had it been used for the last increment,
would have produced an accurate incremental nonlinear response to the step-
wise incremental loads. The procedure implemented was the BFGS method,
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described in reference 10. The BFGS method requires a line-search for each

increment; the above-described line-search method appears suitable and was

used, though it differs somewhat from the one discussed in reference 10. The
| use of the axial/membrane/rotational iterations, described earlier, was found
5‘ to be still necessary for convergence, and this procedure was combined with
the BFGS approach as follows. Each iterative increment was corrected by un
axial/membrane/rotational iteration, and the "double increment" thus cumputed
was subjected to a line-search. The axial/membrane/rotatidnal correction was
separately computed for each interpolation amplitude of the line-search, in
order to account properly for the effects of nonlinearities. Without these
corrections, the line-search always fails. The residual loads resulting
after the increment are compared with those imposed at the start of the
increment, resulting in the transformation matrix of the BFGS method.

bl

The solution procedure described above was found to be uniformly convergent
for both large and small displacements and for large load step sizes. I
addition, the convergence was found to be rapid (typically 15 or less itera-
tions). However, the convergence limit is to a nonzero error level which
cannot be improved upon by further iterations. This minimum error level is a
function of the amplitude of the displacements and also appears to be influ-
enced by the transformations associated with geometrical updates of the ele-
ment baseplanes. For the case of a simple cantilever beam, good accuracy is
obtained when the end displacement is less than about half the length of the
beam. This appears to be true whether one or more elements are used in the
finite element model. Thz intentions of the current work are to handle much
larger displacements *nan this apparent limitation.

.,

A number of numerical experiments were carried out in attempts to understand
and eliminate the minimum error level problem. These included: comparisons
between results when the transverse shear and extensional deformations are b
represented by strain equations permitiing large, as opposed to moderate, l
rotations; elimination (in deformation and residual loads calculations) of the
quadratic-in-x component of the transverse shear strain; the use of double-
precision arithmetic in the geometrical updating calculations; computing

large deflection solutions with-and-without geometrical and stiffness matrix
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updates. The numerical experiments involving the large rotation strain
equations improved but did not eliminate the minimum error level problem.
The use of double precision geometrical update calculations resulted in
somewhat modified solutions, indicating numerical sensitivity in this type
of calculation. This suggests the probable need for extension to double
precision arithmetic in all stress, deformation, and load computations.
However, the minimum error level was not appreciably affected by this
experiment.

Through omission of geometrical updating, it was found that the minimum error
level could be made essentially zero. However, this is not a satisfactory
solution to the problem, because it leads to a non-updated total Lagrangian
approach which is subject to important limitations and errors. In particular,
the desirable cmission of certain normally negligible terms in the nonlinear
strain equations is not admissible for a non-updated total Lagrangian
approach. The geometrical updating used in the present approach is considered
a valuable feature, not to be omitted as a solution to the minimum error
problem. What has been gained through the geometrical updating experiment is:
it has been verified that the element itself is capable of a "zero" error
level in the large displacement state; it is clearly indicated that the
genmetrical updating introduces displacement and deformation forms which for
some reason are not satisfactorily handled by the iterative solution proce-
dure. It appears that the transverse shear strain becomes "locked" in the
element, causing the nonzero minimum error level. Whether the fault lies in
the element itself, or in the solution procedure, is not clear. It appears
that the element should provide convergence to a correct shear strain and
stress, since without geometrical updating it does so, and also since its
nodal and freedom arrangements and its elemental coordinate system satisfy
the required rigid motion and constant strain conditions. On the other hand,
recent literature suggests that similar elements (though without the same
internal nodes and freedoms) may have problems of a similar nature to those
encountered in the present work (Referehces 11, 12). Thus, ine possibility of
an element-levei problem cannot yet be dismissed.

e h e e b

”‘M.&...Amu..%;uw




B e

The total requirements for the solution procedure include a number of options
in addition to those of the basic iteration process discussed above. Other
needed features inciude: conditional geometrical updating of element local
coordinate systems and displacement states; conditional updating of the
stiffness matrix, with separate handling of the linearized portion of the
matrix and the stress-dependent ("geametric stiffness") portion; conditional
controls on solution continuance or termination; limits on the number of
geanetrical and stiffness updates and on the error measure which constitutes
convergence,

The developed solution procedure contains user options for controlling all of
these items. Table 1 gives a brief summary of the total set of solutiun
procedure options. The static perturbation controls are covered in part (a),
and the controls over the entire procedure (as currently coded) are given in
part (b). One ‘tem which requires further discussion is the conditional
updating of the stiffness matrix. The total stiffness matrix is the sum of
the basic stiffness matrix and the geometric stiffness matrix. The updating
of the basic matrix and the geametric matrix ar2 not necessarily done at the
same time, because the geometric matrix contains the stresses themselves. It
is not satisfactory to update the geometric stiffness matrix when the stresses
have relatively large errors. For this reaso:, the updating of the geometric
stiffness matrix is only permitted when the error state of the solution is
within certain bounds controlled by parameters within the code.

It was felt worthwhile to evaluate the new nonlinear element in comparison
with conventional finite element approaches, in application to 7onlinear
analysis. In order for such a comparison to be valid, it must be made with the
two eement types having all features in common, i.e., solution procedure,
element nodal and freedom formulation, all updating and transformations,

etc., except for the single basic feature which distinguishes the new element:
the use of higher order axial/membrane freedoms in combination with lower
order bending freedoms. In order to accomplish the required comparison, the
new element was provided with a special solution procedure option: a solution
procedure constraint was developed which constrains the axial freedoms at
nodes 2, 3 and 4 to values which are the interpolated values at these nodes of

14
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an element <hose axial displacements are 1inear functions (a conventional
axial displacement function). This constraint process is of the type called
"multi-point constraint", and is implementad by a set of matrix transforma-
tions. It permits the element to be used in eit“er its "nonlinear" mode of
behavior, or in a conventional mode, with ail other computational processes
unchanged. As noted in Table 1, this option is effected by input of the value
OPT2 = negative. Calculations made with this option converged very slowly to
erroneous results, verifying that the conventional type of element is
unsuited to the accurate computation of highly nonlinear problems. Section
2.3 discusses these results, which are in complete agreement with the earlier
results of Haftka, Mallett and Nachbar (Reference 1). This capability was
used in the static perturbation version of the code, and is not currently
operative in the BFGS version.

Theory was develcped for a beam element capable of bending and twisting in
three-dimensions, called herein the 3-D beam element. This type of element is
required for problems such as the nonlinear bending and torsional deformation
and buckling of beam structures. A difficult technical problem arises at the
outset of this type of derivation. It is recalled that one of the goals of the
present research is to avoid unrecoverable cumulative error in the problem
solution. A principle offender in this regard is the calculation of the
strain itself. To avoid such errors, the deformation must be determined by
direct calculation of the total strain, using the total displaced state of the
structure, rather than by strain incrementation. To do this requires a
precise definition of the rotation state. The three-dimensional beam element
undergoes three camponents of rotation. These include the twist and the two
bending rotations, ail of which can be large for nonlinear problems. In the
large rotation state the orientation of a rota2ted element or a node of an
element in space cannot be represented by arbitrarily ordered cartesian com-
ponents referred to a fixed coordinate system. Neither can the orientation be
arrived at by sunming small rotations referred to cartasian systems. The
basic problem {is that rotations are not vectors and therefore are not additive.
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A correct large rctation state can be obtained through the use of sequenced
angular rotations called Euler angles. Each Euler rotation takes place about
an axis which has been subjected to all prior rotations in the sequence, which
must take place in a specified order. This approach has been successfully
used for the calculation of large motions of spacecraft as well as other types
of large rotation dynamic probléms (Reference 9). It is necessary to use this
approach to develop the 3-D beam element. If the conventional small angle
(cartesian) approach were used, the strains would be inconsistent with the
rotation state ¢f the structure, and it would be impossible to correct the
equilibrium configuration through the residual load iteration process.

Strain displacement relations based on Euler angles were not found in the
literature, and consequently a set of appropriate finite element deforma’ion
equations had to be developed. The derivation was carried out using a tensor-
jal approach and convected coordinate systems. Appendix B describes the
approach in some detail. This development presented a number of difficulties,
including: the need .~ develop rational approximations associated with the
relative importance. of . many different types of nonlinear terms in the
strain displacement relations; the deformation-following beam cross-sectional
axis system (Euler-angle-defined) does not maintain its "longitudinal" axis
along the beam centerline axis, and it is necessary to define an additional
Euler-angle-defined convected system which has this desirable property (see
Appendix B, Figure B5); it is necessary to determine incremental cartesian
bending and twisting angles as well as Euler increments, in order to maintain
physical reality in interpretation of the derormaticns and the ‘oads. In
implementing the 3-D element together with a stepping solution procedure it is
necessary to use a large number of transformations of geometrical types, in
order to maintain and update tne different convected coordinate systems and
the two sets of Euler angle totals. One such transformation provides the
needed relationship between the stepwise Euler angle rotation increments and
the cartesian increments; the required transformation is called the 1 trans-
formation (Reference 9). Other transformations are required to transform the
stiffness matrix of the element from its derivation coordinate system to the
coordinate systems of the solution process; that is, to transform the stiff-
ness matrix from those definitions used in the strain displacement relations
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to those which are suitable for merging together adjacent elanents and obtain-
ing the protlem solution in terms of meaningful cartesian quantities. Also,
in the solution procedure the coordinate systems used for each element are
convected, that is, they folluw the elements throughout the deformation proc-
* ess in order to retain for each element a small deformation state. Hence, it
is necessary to perform repeated transformations to accomplish the geometri-
cal updating of various solution and geometry perameters. The total solution
process for the 3-D beam element has been flow-charted to provide a methodol-
ogy description suitable for computer coding. A computer code for this
elanent has been about 75% cumpleted.

2.3 Illustrative Numerical Results

This section presents numerical results for several beam bending problems.
Results obtained with both the static perturbation method and the BFGS method
are discussed. The purpose of the example problems is to illustrate the
displacement magnitude capabilities, convergence characteristics, and limita-
tions of the methods developed. Refer first to Figure 1. A simple two
element beam structure is bent by an end 1oad in the global Z direction. The
loaded end of the beam is either compietely free (Figure la) or constrained
against X -direction displacement (Figuie 1b). This problem was solved by the
static perturbation approach. i

Tables 2-6 present numerical data for the beam structure of Figures la and 1b. ]
The tables include deflections, rotations, axial forces in the elements, and
convergence data (numbers of iterations and percent error based on residual
loads). The two values of axial force shown in the tables for node 5 are those
computed for the two elements which connect to this mode.

Table 2 gives numerical results for the problem of Figure la. The load varies
fram 0 to 720 (pounds), while the end deflection varies from 0 to 2.70
iinches). A graph of the deflection versus the 1oad would be very nearly a
straight 1ine, as the cnly nonlinearity in this problem results from the small
foreshortening of the beam due to its deflection and rotation. The deflection
of 2.70 in. is 93% of the theoretical value for this beam, a reasonable value
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for a two element model where each element has only a second degree displace-
ment function capability in bending, The average rotation of element #2 at
720 1bs. is .189 radians. The average element rotation is the angle to which
the "baseplane" of the element is updated in geometrical updating. The table
shows the sequence of baseplane update angles for both elements. The deflec-
tion of 2.70 in. is 13.5% of the total beam length, an amplitude which is well
into the potentially nonlinear range in structural analysis. However, since
the right end of the beam is permitted to deflect freely, the beam is not
stressed axially due to nonlinear strain buildup, and the behavior is essen-
tially linear. The payoff of the new nonlinear element in this case is tha:t
it allows the axial stress to ignore the nonlinear strain effects, even though
fully noniinear strain calculation is done in the analysis. This is accom-
plished by the guartic ax:al displacement function.

The element axial stresses are small and essentially constant over each ele-
ment.. The jump in axial stress at node 5 balances a corresponding jump in the
shear at this node. Nearly constant axial stress in an element is required by
the equilitrium equations. The nonzero axial stress values are correct, and
result from the inclination of the end of the buam with respect to the applied
load. This is i:lustratcd in Figure 2. The figure gives the equations of
equilibriuc wiich must be satisfied by the shear and axial forces at the end
of the beam. It is seen that the inclination of the shear force requires the
axial st-ess ‘n the beam to be nonzero. The inclination of the shear force
~an be accounted for either in the element strain formation or in the solution
procedur:: (by geametrical uodating). To account for this in the strain
formulatior, it is necessary to retain nonlinear terms in the beam transverse
shear strain, a typs of nonlinearity not usually retained in geametrically
nonline.~ analysis. A simpler apprcach, and that used to compute the data
under discussion here, is to use the geametrical updating to rotate the shear
force. The result is that, at the 720 1b load, 707 lbs. is normal to the beam
(the shear, S) and 135 1bs is directed along the beam axis, producing the
axial stress shown in Table 2. These values are determined by the inclination
of the updated baseplane which is seen in the table to be .189 radians. The
total load in the global Z direction remains 720 1bs. It is noted that at
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larger displacements the element stresses do not necessarily follow the sim-
ple line of explanation given. For such problems the solution converges to
give apparently erroneous stresses in some cases.

Faster convergence can usually be obtained if gecmetrical updating is done
infrequently. This is Ltecause the curved, updated geometry of the beam causes
the axial und beuing displacements to be numerically "coupled" much more than
they are in the J1itisl flat, nonupdated geometry, and therefore slows the
iterative convzrgence process. This suggests that solutions might be

obtained at lower cost by applying the total load in the first load step. In
this approach only one geametrical updating is required, corresponding to the
final deflected state. Such a solution is shown on Table 3. The element #2
baseplane was updated in one step to the inclination of .193 radians, con-
sistent with the zeroEﬁ iteration displacements, for which the displacement

at the end of the beam is 2.75 in. (final convergence was to 2.69 in.). The
computed displacements are almost identical to those of Table 2. The axial
stresses are slightly different because the baseplane is updated to a slightiy
different angle than the .189 radians of Table 2. The results of Table 3 show
two important facts: the converged result for iarge loads can be obtained in
a single load step; certain aspects of the solution, such as the axial stress
in the present problem, may be sensitive to the inclination of the updated
baseplane, so that updating should not in general be neglected.

Geametrical updating is only required when the element rotation relative to
the baseplane coordinate systems become large, e.g., greater than about 20°.
Table 4 shows a case of delayed updating. Here the updating has been delayed
until the load reaches 660 1bs. The deflection results are nearly the same as
those of Table 2, but of course the axial stresses are nol correctly computed
until the baseplane is updated. Note that the final baseplane angles here
have resulted from a less recent update, and hence differ slightly from those
of Table 3.

The problem of Figure 1b has the global X displacement constrained at the
right end. This problem is highly nonlinear, typical in character to many
practically important cases involving end-or-edge-constrained beams and
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plates. The solution data are given in Table 5 and on Figure 3 for a load
range of O to 240 1bs. The baseplane in this exanple is updated when the
average slope of the beam (relative o the most recent baseplane update)
exceads .01 radians. Convergence is reasonably fast except at the 180 1b.
Toad. The axial stresses are essentially constant over the lengths of the
elements, being dominated by the effect of the end constraint. They are
responsible for the nonlinear stiffening behavior illustrated by the force-
deflection plot of Figure 3. For larger load levels, the degree of non-
linearity of this problem increases very rapidly.

The next example concerns a "conventional" beam element. This element is
identical to the new nonlinear element except that the axial displacements at
the 1nterjor nodes are constrained to take values defined by linear interpo-
lation between the end node values. That is, these freedoms are in effect
omitted from the problem solution by constraining the axial displacement
shape to be the linear shape of the "simplex" type of element. In solving
problems with the constrained element, fully nonlinear axial strains due to
the bending displacements are retained, and the new nonlinear solution pro-
cedure is also used. Thus, the results provide a consistent comparison °
between the new type of a2lement and one of conventional formulation, with all
other aspects of the numerical processing kept the same. The results are
tabulated in Table 6 for the 1oad range of O to 240 1bs. and plotted on Figure
4. The solution at 720 1bs. was computed in a single load step. The final
deflection at 720 1bs. is 1.57 in., which is considerably less than the 2,70
in. of the new nonlinear element. This error reflects the excessive and
erroneous stiffness of the conventional element due to the axial stresses
which are "locked" in this element by nonlinearity. The "simplex" axial
displacements cannot remove these locked-in axial stresses because of defi-
ciencies of their functional forms. The axial stresses are seen in the table
to be very large. The error illustrated by this example is consistent with
that discussed in Reference 1. The new nonlinear element has eliminated this
type of error.

For displacements and rotations which are significantly larger than those of
the previous examples, convergence difficulties were encountered with the
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static perturbation approach. As discussed in Section 2.2, the BFGS method
was implemented to improve convergence. In addition, the transverse shear
strain was modified to incorporate nonlinear terms. The primary effect of
this modification is to rotate the resultant shrar force on the element so
that it is parallel to the deformed beam cross-section. This nas a relatively
small effeci on problem solutions.

Figure 5 shows two cantilever beam problems which were solved with the P°GS
approach. Figures 5a and 5b show a single element problem, with the support
located both at the center of the element and at the left end. The problem of
Figure 5a requires no geometrical updating because the baseplane does not
rotate. It yields an exact solution for the rotations of the ends of the
beam. In contrast, the problem of Figure 5b has significant element baseplane
rotations requiring geometrical updating. The loading in both cases is a pure
moment, and the purposes of the example are to investigate the rate and degree
of convergence obtainable at large displacement and the influence of geo-
metrical updating on convergence and accuracy. Figure 6 shows dimensioned
sketches of the deflections for both cases. For each problem, the figure also
shows the displaced condition referred to the coordinate system of the other
problem. These data are shown in parentheses. The deflections are large, on
the order of half the length of the beam. It is seen that the simple
cantilever element converges to a solution having 4% to 5% more curvature than
that for the doubly cantilevered (symmetrical) element. The cause of the
difference is almost certainly the geometrical updating required for the
simple cantilever case, which is not done in the symmetrical case. Conver-
gence for the symmetrical case occurs on the first iteration; it is much
slower for the case with geometrical updating. The values of the element
shear and axial stresses for the simple cantilever differ from those of the
symetrical problem. This causes element (residual) loads which influence
solution convergence and accuracy, particularly for multi-element problems.

The cause of the numerical differences between these two solutions has not
been fully resolved. It appears doubtful that the differences arise due to
the element formulation itself, because the symmetrical problem yields an
exact solution. The simple cantilever case can clearly have exactly the same
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deformation state as the double cantilever, when referred to an updated base-
plane. Thus, the determination of residual loads, which is based on only
displacements referred to the updated baseplane, is potentially identical for
the two problems. It is likely that the BFGS solution procedure (which is
basically an optimum-seeking type) has become trapped along a solution path
which has a false minimum error state. This view is strengthened by the fact
that frequently a regeneration cf the stiffness matrix in the deformed state,
followed by subsequent BFGS calculations, yields a substantially improved
solution accuracy. The axtensive use of single precision arithmetic in the ]
code may also be a factor in the minimum error prablem. It is alsc noted that ]
the geometrical updating of the axial displacement values at nodes 2 and 4 i
makes use of interpu..ced bending displacements at these nodes. The bending
displacements themselves are not updated for these nodes. However, if they
were updated, the resulting values would not adhere to the quadratic bending
displacement form when referred to the updated baseplane. This is a source of
inconsistency inherent in the uodating process, due to the different function
shapes used for the axial and bending displacements. This inconsistency
should, however, be correctable by residual load iteration.

2.4 Suggested Further Work

The element development appears to have successfully controlled the problem
of large nonlinear strains, as illustrated by the results shown on Figure 6
for the symmetrical cantilever. However, for more general cases, such as that
of the unsymmetrical case on Figure 6 and a number of multi-element problems
which have been solved, there remain unresolved problems in either the fcrmu-
lations or in the actual calculations. Displacements which are very large
have been successfully computed despite the difficulties encountered, how-
ever, and the potential of the new type of eledent appears to have been
adequately demonstrated. If the research is to be continued, the accuracy and
convergence difficulties will have to be addressed as a first step. The four |
areas of study listed below are suggested candidates for this work. |

o} eliminate the use of single precision arithmetic in all suspect !
calcuiations.
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0 investigate the possibility of the solution procedure being
"trapped" by a false minimum of the error level.

0 inves.igate whether the limitation of the element to constant cur-
vature (w is quadratic) while simultaneously a quadratic rotation
is allowed is a cause of inconsistency which could contribute to
numerical problems.

It is expected that the numerical difficulties which still exist can be
resolved. In this event it appears particularly important to develop and test
the three-dimensional beam element. This work will evaluate the Euler angle
deformation theory and the set of geometrical transformations inherent in

this approach vhich is new in the field of nonlinear finite element stress
analysis. The theory and procedural specifications have been complieted and
the computer coding partially completed for this task.

If the three-dimensional beam element work shows the Euler angle theory to be
a valuable tool for large displacement finite element analysis, consideration
should be given to a further task. This task would apply the Euler angle
approach and the algorithms developed for the two-dimensional beam element to
the development of plate and shell elements. It would result in a truly large
def lection analysis method for plates and shells, leading eventually to a much
needed large displacement shell buckling analysis capability.
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Figure 1: Illustrative Cantilever Beam Problems
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Figure 2: Beam End Conditions for Large Rotations
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(a) Double (Symmetrical)
Cantilever

a2 3 4 5.y

[ 10 |
a-1mx1@
El = 6.6 x 10%,
GA=1,11x10 .

(b) Simple Cantilever

Figure 5: Moment Loaded single Element Cantilever Beam Examples
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Figure 6a: Simple Cantilever
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Figure 6b: Double (Symmetrical) Cantilever

Figure 6: Displacements of Single Element Cantilever Beam




Table 1: Summary of Nonlinear Solution Procedure Cantrols
(a) OPTION CONTROLS =

T g e

STATIC PATH PARAMETER | "ALTERNATE" i -
PERTURBATION| LOAD | ENERGY | ITERATION LéNEA%ZED gggxg:;lom
ORDER TYPE | TYPE N0 T ves ] SOLUTIONg
>3 i
. OPT1=| OPTI=| Yes Yes
E 1 8:;%-12 No -1 1 0PT2=0 0PT2=-1 |
Yes Yes OPT1=} OPT1=
2 0PT2=20 | OPT2=2 | -1 | 1 No No
3 Yes Yes OPTI=]| OPT1=
OPT2=30 | OPT2=3 | .3 1 No No

> OPT1 and OPT2 are program input data.

> First order static perturbation is standard stepwise solution -
Path parameter is always load-type in this case

B> Linearized solution omits all types of nonlinearities.
> Partial list given; includes principal control inputs.

et 1 Lk L A L i . ml

i

(b) NUMERICAL CONTROLS =>

INPUT DATA
NAME PROCESS CONTROLLED BY INPUT DATA
EPSCON: Allowable Error (Residual Loads) For Convergence
DAL IM: Rotation of Element From Base Plane at Which
: Geometrical Update is Performed. o
] Rate of Divergence at Which Stiffness Matrix Update i
EQCHK: is Performed, §*
RACHK : Error (Residual Loads) at Which Stiffness Matrix Update
* i{s Performed, )
ITRLIM,, Iteration and Updating Counts at Which !
UPLIM ° Solution is Aborted _ ,
DKCT : Required Minimum Number of Iterations Between Stiffness f
Matrix Updates (Over-Rides EQCHK, RACHK) |
i
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APPENDIX A

Spatic Perturbation Path Parameter

This Appendix outlines briefly the use of the load-based and deformation-
based path parameters in the static perturbation method. The equations given
herein are programmed in the 2-D beam code (see Section 2.2).

The static perturbation method uses Taylor series to represent the incre-
mental displacement vector aQ® and the incremental load vector aP

. & , w3
aP= PS 4+ PSS + EP S + oo
G LR + LGS
AR2QS + 3R s .

where ( ) denotes differentiation with respect to the path parameter S. It
is convenient to represent the P derivatives as follows:

=P
E:.R.P"

P= AP’

—

so that

P . (1] ™ ‘-.t '3 ..
ap= P (AS+iAS +gNs +- )

and to set P° equal to the load increment

P': AP

Al
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such that
. \ -n‘ L § \ sen S; - ‘
-A. S+ "i-A. s hd E -A- -

The values of the Q derivatives can be shown to be given by

AP’
a: K.‘<-K-P." ‘.‘Q)

-\

a= ¥

Ge (R -2%E - K4

———

in which K is the tangent stiffness matrix and K and E are, respectively, the

[% first and second derivatives of the K matrix with respect to the path parami

: eters (accomplished by chain-rule differentiation: 3K /3s =('K/‘o0.)- 6).

The solution process requires solution first for ﬁ, followed by calculation of _
k, followed by calculation of, in order, a, i, and finally,'a. The Taylor ;
series then gives the value of the vector aQ.

The load-based path parameter sets
_K_::K_:O s j\_-\

AP = P.,J.\_S = SP. i

S=1

and allows calculations of 8 Q immediately that b and Q are known. The first,
second, and third order approaches retain, respectively, the terms S, 52, and ]
53. This is a relatively simple approach to implement. a

The deformation - based path parameter is much more complex because the values {@
ofJi.)i,j:, and S are unknown. This approach is based on the definition of S ) |
below, using the tangent stiffness matrix,

.
s = 8Q K AQ l




where ( )T denotes the row-vector (transpose). Thus, S is roughly propor-

tional to the incremental displacement amplitude. To explain the solution
process for this case it is necessary to make a number of definiticis, as
given below.

Q° - K-\ Po

K°= k(A (evaluate K with Q° in place of 6)

A S L
(evaluate K with Q° in p]ace of Q in the Q -

ke x i, (]%)
T dependent part of K, called K 7)

\27."- .\Zz (@) (evaluate K with Q% in place of Q in the Q -
dependent part of K, called here I'(z)

K3 = Kg(“") (evaluate'K' with Q1° in place of Q in |°<.2\

with these definitions,

D e e T e skovg
K= A KI® + AKZ - A K3

and (see equation for Q)
2488 + Kok = 2 AR (A - -A-G’-‘) + I
ST (RR 4+ A KL - AKD)

It is convenient to rewrite this as
o o ° .3 . . .
‘L\it&-&ﬁa&z.}\nl\.(ﬁ?\o* P4 ) + J\_(?3-2P7__P5)

where the various "PN°" are derived by substitutions for the various "K" type
matrices above.

Finally, we define the vectors
aa® = ¥ (2P1°~ P4)

aaq = K (93'- 2p2° — p5*)

. . ol aa s L e GF . P
DR ST N S PG JP GNP O N T 1 il
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with the result
s 0 (X34 o .3 ) . . o
AQ = AR - A QQ@ - AA R

It is seen that the entire evaluation depends on knowing.]g,jl,]( and S.
These values can be computed (with much difficulty) from the basic definition
of 52 given above. The equations are complicated are are omitted here. The

final result is
- . e 3 .s 3
AQ.—.af-o.\'(-;-_.ms") —ad (3 AR5 ) —aad (54 3)

9
The second order procedure keeps only S, and the third order procedure keeps

3

both S° terms.
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APPENDIX B

Euler Angle Theory for Beam Element

This Appendix describes the use of Euler angles in the determination of the
def ormations of beam elements, emphasizing the physical nature ard basis for
this approach. The derivation of the strain-displacement equations in terms
of the Euler angles is also described briefly.

Figure Bl shows a beam cross-section in the initial undeformed state. The
section is shown rectangular only to aid visual clarity. The xyz triad is
oriented such that x is the beam centerline and the y and z axes are the axes
of bending. The shear deformations associated with bending occur in the xy
and xz planes.

<>

»>

Figure Bl - Undeformed Section Figure B2 - Deformed Section

Figure B2 shows the cross-section after displacement. The triad §§§ has
followed the motion of the section, as described below. This "convected" Xy2
triad is orthogonal, but, as will be shown below, is not truly "imbedded" in
the material. The xyz triad is carried into the §92 triad by means of the
sequence of Euler angle rotations, in the following manner.

Allow first a rotation @B, of the undeformed section about the x axis, as
shown in Figure B3a. This results in a new triad, denoted in the figure by
x'y'z'. Of course, x' and x are identical.
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(a) Rot:at'lonB1 About
x Axis
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(b) Rotation BZ About

y' Axis

(c) Rotation 133 About
2" Axis

Figure B3 - Euler Rotations
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Next a rotation /92 takes place about the y' axis, resulting in a new triad
x"y"2". Finally, a rotation ,63 about 2" results in the triad Q§§ which
describes the deformed orientation of the cross-section. The angles ﬁ]ﬁ 52’
and ,63 are Euler angles. They are restricted to the sequence of axes (1-2-3)
in the special meaning and sequence illustrated. For the general case, there
are 12 possible Euler angle sequences, but only the (1-2-3) sequence described
above is needed for the present discussion. The importance of this rotation
description in the present application is that it: (1) fully accounts for the
effect of large rotations in reorienting the beam cross-sectional axes; (2)
avoids any errors due to cartesian rotation incrementation.

The three Euler rotations are not in general those of conventional beam twist
and bending, although for small total rotation magnitudes they are indistin-
guishable from these quantities. For large rotations they are not correctly
viewed in this way, however, and for this reason it is incorrect to attribute
the beam twisting and bending stif.ness properties to the rotation values ;31,
B 5» and ﬁ?3. Derivation of the beam twist and bending moments instead are
derived by a rigorous process described later. While the Euler angle repre-
sentation has the advantage of rigor, it does not provide a fully satisfactory
deformation description from a physical viewpoint. To obtain the needed
physical interpretation, it is necessary to compute small incremental rot--
tions about the beam bendir.g and twisting axes, superimposed on a previousiy
accumulated large rotation state. Figure B4 attempts to illustrate this view
of the deformation. The figure shows the deformed section with the associated
triad i??. The triad is essentially identical with the beam section axes and
centerline, deviating only slightly from these axes due to the shear strains
(angles of the order of 0.3 degrees). The figure indicates that a sma™l
rotation superimposed on the section in its Q?? orientation can be viewed in
two ways: as a cartesian rotation taking place about the Q,?, and Z axes, or
as an increment in the Euler angle values ﬂl, ,32, and ,63. The Sfl,
s;z, and §8 3 must be viewed as taking place about the axis systems which
were defined during the entire deformation process—the xyz and x'y'z' and
x"y"z" systems. This is indicated in the figure. These rotations are not
physically meaningful, but can be used in a mathematically rigorous way to
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Figure B4 - Small Superimposed Rotations

describe the nonlinear deformation state. On the other hand, the cartesian
small rotations Sei, sey, and §8 4 are physically meaningful because

they indicate increments of twist and bencing deformation; and in dynamic
analysis they are correctly associated with the beam cross-section rotational
inertia properties. To combine the rigorous nonlinear def ormation description
with the physically meaningful one a special type of geometrical transformation
is available. This is expressed by

562 5B
89% = ‘_"T-] SF'L
se3 §Ps

The 1T matrix is a function of the total accumulated Bi» By and B4 A
suitable nonlinear analysis approach must be based on deformations described
rigorously by B1» B2 B3 and § 41, 58 2 $8 3 and in addition contain
transformations to provide numerical results in the form §04%, 5069 563
The AT matrix is the means for accomplishing this.,

A refinement of the above approach caf be made to eliminate the small approxi-

mation in the meaning of the §© values which is due to the fact that the %y2
triad is not truly identical to the conventional beam twist and bendingaxes.

B4
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Figure B5 shows a beam cross-section with a large shear deformation. The
actual "material" cross-section is shown with the heavy

ALY
NN Section With Shear
Deformation Removed
(XYZ Triad)

True Orientaticn of
Deformed Section (%2 Triad)

Figure BS - Beam Cross-Section Local Coordinate Systems

lines. The light dashed lines show the section with the shear deformation
removed; the displacement vectors show the small cross-section motions neces-
sary to remove the shear angles. The section bisecting axes are shown for
both cases as an aid to pictorial clarity. The triad XyZ coincides with the

"material-y and z" cross-section axes; it is shown by the very solid heavy
coordinate axis lines. The X axis does not coincide with the beam materia
centerline. The triad X¥Z coincides with the section material-y and z axes
with the shear deformation removed. Since this section is normal to the beam
centerline, the X axis is colinear with the centerline. The ?fftriad is
shown by the very heavy dashed lines. It is desirable to keep track of the 'i'ﬁ'
triad in the solution process, because small cartesian rotation increments

g referred to this triad are precisely the "nominal" section twist and bending
rotations. This is eacily done as follows: first presume that Euler angles

_ Auis Puzr Ay define the triad X¥Z; then (1) compute the (see fig. B4)

E rotation increment 86;,‘ e 5 Y] %3 (2) compute the Euler increment

§#1» 5@, &Py using the 1 matrix and sum to obtain the total g,, #,,
By (3) from the strain-displacement equations, compute the shear strain
increment; (4) subtract this increment from the 593«‘ and §e 3 values, call-
: ing the results SeMS; and §6 (these are the bending rotation increments
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which correspond to conventional beam theory); (5) using the Ty trans-
formation (the T -type transformation which is computed using the Euler
angles (PMI’ Y ﬂM3)’ compute the incremental values §€M1r EB8M2
§8m3 (6) sum to compute the total values ﬂMl' A M2 ‘3"3. This procedure
maintains the totals of two sets of Euler angles: A1 Ba2s /33 defining the
xy2 triad (needed to compute the deformations); and Eu1r Amz An3 defining
the xyz axes, which are the conventional (convected) axes of beam theory.

This Appendix closes with a brief outline of the procedure for the derivation
of the nonlinear strain-displacement equations. These are derived in terms of
the Euler angles pl, B2 B3 because only these angles provide a rigorous
representation of the total rotations of the beam material elements. The beam
centerline has the displacement vector W . Denoting by & ;the basis vectors
of the undeformed beam element, and by xi the initial undeformed coordinates
of the element, the initial undeformed beam centerline has the position vec-
tor, respectively,

R°t: )(;Q; \1

The vector ¥V s defined to be the additionai displacement of a material
point which is off the centerline. Hence for an arbitrary point of material
on a beam cross-section,

R: (X;d- \L‘)Q‘ +V

The Euler angles are used to define ¥V . Referring to Figure B3 and defining
the basis vector sets &ys a;, and a'i' as belonging, respectively, to
triads xyz, x'y'z', and x"y"z", % can be written

V= B(4@s -ER,) +g( e, ) - gy (ya

It is noted that actual values of y' and y", and 2' and 2", respectively, for a
given point on the cross-section, are identical to the values of y and 2. ;
This is because all of these coordinates are defined by "following" the
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material. Hence, with y, and z interpreted as initial coordinates of a point
on the beam cross-section, ¥ is more simply written

V=pA(483-2@,)+ g.2€, g, ya]

The values of ni and ni can be represented in terms of the initial basis
vectors @, and the Euler rotations g,, B;, and g,. The derivation is
lengthy, and is not given here. The result is

Ve g (s@s-2es) + 20,

_Fs \3( o, cos{!; tA, sinf s B, Ry sinfly Cos,‘«)

The value of the position vactor R is now known for any point on the
clement, in terms of the centerline displacement u\i, the Euler rotations

(31., and the "material" coordinates x,y, and z. By differentiating R with
respect to x, y, and z, there are obtained an important set of vectors, called
the basis vectors of the deformed material coordinate system. These vectors
contain a complete description of the deformation state. It is seen that
these . _.1s vectors contain derivatives of the Pi and the N with respect to
the x, y, and z coordinates. The x-derivative, in particular, is important in
defining the deformation of the beam element. The theory of the cerivation
process follows reference 13. Simplifying approximation can %= made, and the
details and results are too lengthy to include here. It is simply noted that
this means of developing the strain equations is exact and inciudes all of the
effects of nonlinearity.

The brief description of the nonlinear beam deformation given above has the
purpose of illustrating that the deformation is dete'mined in terms of the
Euler angles rather than in terms of conventional cartesian rotations. This
formulation is r ous for large rotations and does not suffer any inaccu-
racies due to sunming angular motions.

B7

ol




APPENDIX C

f Summary of Proposal for Contract F49620-79-C-0057

] This Appendix contains the Technical Approach (Section 2) and

! two appendices from "Technical Proposal - Program for Nonlinear
Structural Analysis", submitted to AFOSR in August, 1978. This
proposal is the basis of the current AFOSR contract on nonlinear
finite element research. The discussions herein are intended

to provide background and supplementary information supporting
our present report. '

¢

S . SR




2.0 TECHNICAL APPROACH

The technical approach builds on existing research results. The element
technology to be used is basically that of the stability elements (Refer-
ences 1, 2, 3). The solution procedure technology will be based on the
nonlinear-step static perturbation procedure (References 4, 5, 6). The
static perturbation procedure has been demonstrated to be a superior
solution method for strongly nonlinear static problems. For dynamic
analysis, an extension of the procedure has been developed in the current
AFOSR contract. Numerical data demonstrating the superiority of this
approach are given in this proposal. The goal of this proposed research
is to merge these two technologies into a working pilot computer program.

2.1 Technical Requirements

The principal features required of the overall approach, in regard to
applicability to nonlinear problems, are listed below:

Element Technology (References 1, 2, 3):

1. Elements are required whose displacement function formula-
tion prevents anomalous (overstiff) behavior due to
nonlinear strains. These are called stability elements,
and utilize extended forms of axial/membrane displacement
functions, in conjunction with conventional bending
deformation forms.

2. Element strain calculations must be made on a total
strain basis, to avoid cumuliative errors due to summing
increments. This is required to allow the development of
large rotations and nonlinearities.




3. Element displacement functions must be referred to
convected coordinate systems. This avoids exchange of
axial/membrane and bending displacement roles (e.g., u
and w exchange meaning as the rotation becomes large) in
the large rotation state, and permits the simplifying
assumption of shallowness in forming the nonlinear strain
equations for shells or highly deformed beams and plates.

4, Residual force evaluation and egquilibrium corrections
must include the effects of element strains and geometry
changes.

Static Solution Procedure Technology (Referances 4, 5, 6)

1. The characteristic problem of excessive residual forces,
with consequent slow convergence or divergence in problem
solutions, must be avoided while retaining reasonably
large step size. This requires the use of a nonlinear
stepwise solution procedure.

2. The solution procedure must be compatible with the
stability elements, in particular with the convected
coordinate system approach.

3. The solution procedure should include a means of auto-
matic, internal, computation of step size. Gains in
solution economy from this feature can be very large.

Dynamic Solution Procedure Technology
1. As noted above, the method must incorporate a nonlinear
step. Automatic, internal step size selection should be
incorporated insofar as is possible.

2. The solution procedure must be compatible with the
stability elements, particularly as regards the convected
coordinate system and the residual load calculations.

- ——
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3. The solution procedure must not require stepwise inver-
sion of the structural stiffness matrix. Instead, inver-
sion of the mass matrix must be used, for reasons cof
economy.

The proposed technical approach meets all of these goals. All of the
technical developments required in the proposed research are reasonably
well proven as regards accuracy and practicability. Hence, their merging
into a single computer program appears to involve little risk. The
major gains from the proposed work should be in the matter of evaluation
of the overall technical approach on specialized problems. The particu-
lar types of problems for which this approach is required have the
following characteristics:

0 The equilibrium is governed primarily by nonlinear axial/mem-
brane stresses induced by bending rotations.

0 The axial/membrane stresses vary rapidly over the structure.
An example is the type of buckle pattern which occurs typi-
cally in axially compressed cylinders, in higher vibration
modes of beams and plates, and in short wave length vibration
of shells. This includes also structures which undergo a
near-uniform nonlinear axial/membrane stress, due to boundary
constraint. However, this type of problem can often be
solved adequately with conventional methods.

) Boundary constraints on stretched membranes, plates, and
shells can cause rapidly varying local rotations and nonlinear
strains at locations where the boundaries undergo sharp shape
changes (corners, etc.). Hence, this type of problem requires
the stability type of element in cases where accurate stress
analysis within these zones is desired.

C4
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] Prediction of instability behavior in general requires a
nonlinear-step type of solution procedure. The effects of
nonlinear effects such as mode switching, limit points, snap-
through, and buckling influenced by prior information, are not
usually amenable to eigenvalue analysis. The alternative of
asymptotic instability analysis involves very difficult calcu-
lations. For either case a competent nonlinear step procedure
is required to obtain problem solutions. The case of follower
loads also falls in this category.

) The important problems of nonlinear oscillations (e.g., limit
cycle predictions) are not generally solvable analytically.
The finite element approach with a competent nonlinear dynamic
solution procedure probably offers the only practical approach
to this problem. This approach can evaluate nonlinear respon-
ses for the "almost periodic" case as well as the true peri-
odic case, and thus provide much information about dynamic
behavior and potential large amplitude dyna.ic responses of
nonlinear structures. *

2.2 Technical Method Descriptions

This section outlines briefly some of the details, and prop ‘sed modifica-
tions, of the technical methodologies to be merged in this cuntract:

the stability elements; and the static perturbation nonlinear stepwise
method, as applied to static and dynamic problems.

Stability Elements: The present computer program (References 2, 3) for
the stability elements (hereinafter called HMN elements, as in these
references) has demonstrated superior accuracy, as compared to conven-
tional elements, for the case of large bending deformations. In addi-
tion, the original work of Haftka, Mallett, and Nachbar (Reference 1)
showed that a marked accuracy gain was obtained from the stability-type
of beam element in application to buckling solutions for beam-columns.
The basic cause of the accuracy improvement gained from the stability
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and HMN elements is that, due to the "strain-smoothing" enforced on the
nonlinear strains by the high order membrane/axial displacement func-
tions, the elements' strain energies are reduced to near minimum values,
consistent with the magnitude of the overall deformation state. Since
the improvement is effected through the membrane strains, to which cor-
respond very large stiffness terms, the accuracy gain can be very large.
In the case of stepwise linear, nonlinear problem solutions, the gain is
effected through the residual load magnitudes. In the case of eigen-
value solutions, it occurs in the eigenvalue itself.

The extension from one-dimensional (Reference 1) to two-dimensional ele-
ments (References 2, 3) creates many difficulties in applying the origi-
nal stability element concepts. This difficulty resides primarily in
the fact that the added, higher order, membrane displacement functions
(the basic approach of the stability elements) are nonzero over the
entire two-dimensional element, including its boundaries. If one
attempts to minimize the strain energy on the elemental level, which
would be a relatively simple task, in general inter-element displacement
incompatibilities will b/. created. The alternative is to derive speci-
fic, explicit constrair:s on the added functions, such that specific
higher order terms in the strains (ex, €y ny) are set to zero, without
violating inter-element compatibility. This alternative becomes very
complicated, but nevertheless was the one adopted in the HMN element
work of references 2 and 3. The work was very successful for large
bending deformations, and less so for large torsional deformations. The
rcason for this is that the specific higher order membrane functions
which compensate for large torsion (nonlinear ny) may in some cases
cause undesirable higher order direct strains €y and €y The reauire-
ment to allow arbitrary element orientations relative to any structural
deformation pattern causes this difficulty to go both ways: HMN com-
pensations for large torsion may create undesirable direct strains; HMN
compensation for large bending may cause undesirable shear strains. The
physical meaning of this situation is that either large bending or large
torsion will in actual practice cause a trade to occur between higher
order shear and direct membrane strains, such that the structural poten-
tial energy is minimized. The failing of the HMN elements of references
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2 and 3 is that they deal with the strains separately, rather than with
the total deformation state.

There are several alternatives for continuing work on the present ele-
ments. First, it is recognized that they periorm well as they are cur-
rently formulated. They might perform better with the torsion-membrane
shear interactions removed, which would be very simple to accomplish.
Finally, a method for obtaining the shear-direct strain "trade" could be
devised and implemented. It appears that before any of these alterna-
tives are pursued, another option should be investigated. Figure 1
shows an isoparametric quadrilateral (of the general type of Reference
9) which has a special relationship between nodes and displacement
freedoms. The element has 17 nodes, of which only 8 nodes are used to
define the bending freedoms, and all 17 are used to define the membrane
freedoms. This element will have higher order membrane strains, to
compensate the nonlinear strains due to bending and torsion, by virtue
of its extra 9 membrane only nodes. Thus it is basically a stability
element in the sense defined by reference 1. The element has an advan-
age over the HMN elements of references 2 and 3 because its higher order
freedoms are nodally defined, and thus can be committed to the global
solution process without creating inter-element incompatibilities. The
displacement functions for the 8 node bending behavior will be those of
references 2 and 9. Those for the 17 node membrane functions will
follow the conventional forms for isoparametric-elements. It is proposed
to use this element in the research described herein.

Figure i also shows a beam element which will be developed. This
element differs from conventional beam (cubic displacement) elements.

It has identical displacements to those of one side of the quadrilat-
eral. This will make the two elements nodally compatible in problem
solutions.

The work of references 2 and 3 includes many features which are not
dependent on the explicit strain constraints of the HMN elements. These
include the developed solution procedure details, geometrical transforma-
tions, and nonlinear shell equations. Al1 of these are applicable to

the element of Figure 1, and will be retained in the proposed work.
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The updating (or convection) of the element coordinate system is pres-
ently done for every iteration of every solution step. This is costly,
and is not always necessary, as this set of transformations is only
important when significant rotations have occurred during the step. It
is proposed to make this updating conditional on the rotation magni-
tudes. The residuals will be referred to the start-of-step coordinate
system unless the updating is found to be required. In addition, it
appears that when it is necessary (rotations are large) to update the
element coordinate system, also the solution coordinate systems and the
stiffness matrix should be updated. The programs have this feature

Already and it is simply necessary to make the implementation condi-

tional on the coordinate system updating. .The changes to be made will
cause the updating to be done infrequently, conditional on the rotation
magnitudes being of the order of 15°. This will reduce costs consider-
ably without degradation of accuracy.

Several features of the present nonlinear element formulations which
have proved particularly effective and will be retained are listed
below:

0 The iteration procedure which alternates axial/membrane and
all-freedom iterative corrections will be retained (unless it
is shown to be unnecessary due to the use of the nonlinear
step solution procedure).

) The conditional updating of the geometric stiffness matrix,
based on the magnitudes of the residual stresses, will be

retained.

0 The convected coordinate system approach will be retained.

0 The user-option of over-riding the internally computed solu-

tion coordinate systems is needed for generality of boundary
condition specification in the nonlinear case, and will be
retained.

e e it s




0 The shallow-shell formulation will be retained.

Further development of the triangular HMN element is not proposed herein.

This element has the recognized difficulty of inter-element bending
siope discontinuities. While this effect is not always necessarily a
bad one, it has complicated the handling and interpretation of residual
loads in the stepwise solution of nonlinear problems. It is noted how-
ever, that the triangular element appears to be nearly free of the
difficulty regarding bending/torsion and shear/direct strain inter-
actions which are described above. Thus, it may ultimately turn out
that the triangular HMN (BClZ-Reference 8) element merits further work.

Nonlinear Step Static Solution Procedure: The nonlinear step capability
will be developed based on the "Static Perturbation" method. This
method was described by Sewell (Reference 4,) and extended in a cost
effective manner to finite element applications by Vos (References 5,
6). In this procedure the nodal displacement vector is expressed in
Taylor series form in terms of a path parameter. Displacement deriva-
tive vectors for use in the Taylor series are determined from solutions
of successive differentiations of the equilibrium equations, using the
system tangent stiffness matrix. Problem solutions are determined from
the Taylor series expansion. The residual load method is still used to
assure close conformance to the equilibrium path.

This nonlinear step approach allows solutions to be continued through
_Vlimit point instabilities. The method can incorporate both material and
geometric nonlinearities, as well as the effects of nonconservative
follower-type forces. The only matrix decomposition required is that of
the system stiffness matrix, and this is only required once per step.
Techniques will be developed for selecting appropriate step sizes. It
is proposed that both second order (quadratic step) and third order
(cubic step) approaches be incorporated and compared for relative effi-
ciency. Appendix A gives the basic equations of the static perturbation
method for oo case in which quadratically varying in step solution
variables are retained. Appendix B gives formulas for the nonlinear
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stiffness matrices, in terms of element displacement forms and matersja)l
property matrices.

Figure 2 shows results computed for a simple nonlinear problem, comparing
quadratic static perturbation solutions and Newton-Raphson {piecewise
1inear) solutions for two step sizes. The static perturbation procedure
is seen to converge, with decreasing step size, much faster than the con-
ventional piecewise 1inear method. Also shown is a result computed with
the static perturbation method using automatically varied step sizes,
computed during the solution by the formula 4S = constant x (0/6). The
results are excellent. The figure notes the numbers of steps computed
for each plotted curve.

For use with the convected coordinate system procedure (updated total-
Langrangian formulation), the static perturbation method must accomplish
coordinate trarnsformations on the in-step nonlinearity matrix (Kr - see
Appendix A). The proposed method for accomplishing this is as follows:

Solution variable rates are computed in solution or global system:

4

Transform to element baseplane system
T.
Q-4

Evaluate elemental matrix Plkeg
(see Appendix A, Equations A4, A5)

Transform to solution or global coordinates
P1k-@ + PIK-§

Form P1 = (P1K-§) §

This procedure avoids the requirement to transform the third order tensor
quantity P1k. The transformation of P1k.q is a simple stiffness matrix
transformation, using a conventional coordinate transformation matrix, T.
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Nonlinear Step Dynamic Solution Procedure: Ther2 are many different
’ forms of discrete step solution procedures in use for solving transient
§ dynamic analysis problems. For the most part these methods ara based on
} using the set of previously computed solution steps, together with the
differential equations of motion, to predict the solution values at the
end of the current computation step. The stepwise equations used are
based on either difference formula representation of timewise deriva-
k tives of the unknown variables (using past and future solutic, sets), or
‘ on interpolation formula representation of these variables (again using
past and future solution sets) with corresponding analytical representa-
tions of the time derivatives. In all cases the equilibrium equations
are forced to be satisfied, in terms of solution variables at discrete
{ime points, at a particular point in time. The choice of this time
point is such that the unknowns to be aetermined, i.e., displacements at
the (n+1)§3-t1me point, appear in the discretized equations. The dif-
ference formula and interpolation formula approaches are closely related, M
but in general lead to different equations, and hence to somewhat differ-
ent numerical results in applications. Other distinctions between these
methods include whether the equations are implicit (solution requires
iterations at each time point, because equation coefficients are depend-
ent on future points), or explicit (solution steps do not require itera-
tion because equation coefficients are only dependent on past points);
and also what order of derivatives are employed in the equations of

motion. Regarding the latter options, one can, for example, simply use
the second order equation of motion,

M°.=P'KSQ 1 )7

or employ further differentiations to obtain, in addition,

R T

MQ = b - Ko 0 2

My =P -KrQ- KpQ 3

N
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In these equations, Ks and KT are, respectively, the structural secant
and tangent stiffness matrices. A further important consideration
relative to these solution procedures is whether, at each solution step
(and perhaps at each iteration of implicit methods), the computations
require only the decomposition of the structural mass matrix, or alter-
natively, a decomposition involving the mass and stiffness matrices.
The latter is generally the case for implicit methods, and is very
costly in practical numerical work.

The implicit methods in some instances have the advantage of uncondi-
tional stability as the time steps are increased in size, while the
explicit methods beccme unstable for particular step sizes (of the order
of the half-period of the highest frequency components of the structural
system). The advantage of the unconditional stability is that the
highest frequency structural actions of a finite element model (which
can be of very high frequency for fine discretizations) will be "damped"
to a near zero amplitude in problem solutions. However, particularly
for nonlinear problems, obtaining good solution accuracy may require
smaller time steps for properly representing rapidly varying structural
behavior than would be required to satisfy stability criteria for the
integration procedure. Thus it. appears that the implicit methods,
requiring costly stiffness matrix decomposition, may not be optimum for
nonlinear dynamic analysis. In addition, the implicit methods impart a
numerically-induced artificial damping to problem solutions, which in
itself requires the use of small time steps to avoid excessive energy
loss due to the artificial damping effects.

References 7, 12-16 discuss various solution procedures of the general
types described above. The discussions in these references are for the
most part mathematical in approach. In order to put such methods in
perspective, a particular procedure, called the Houbolt method (Reference
16) and generally considered to be a superior method, has been used to
solve a simple nonlinear problem. Figure 3 shows the numerical results
for several time step sizes. The solution involves iterations at each
time point, and the data shown are iterated to obtain fully converged

c12

PRSI PRV




results. It will be seen in later discussions that the accuracy of the
Houbolt method, at least in this particular nonlinear problem, is not
particularly good, and can be improved on by simpler methods. The
Houbolt method is described in Appendix A.

A basically different type of formulation startc from the representation
of the solution as a Taylor series. In this case the solution at the
(n+1)§£-time point is based on its derivatives at the nth time point.
This approach offers a number of advantages: complete freedom to vary
time step size during the solution; solution behavior governed by the
most recent structural behavior, rather than by extrapolation from past
behavior; simple extension to higher orders of approximation, even dur-
ing a problem solution, without changing the basic solution equations;
ability to handle in-step nonlinearity without the use of an implicit/ !
iterative solution method (only the mass matrix needs to be decomposed). j
This approach is analogous to the static perturbation procedure, and the
relevant equations are given in Appendix A. This approach is proposed
for the subject research and computer program development.

T T e e s

The Taylor series representation approach, called herein the "dynamic
perturbation method", can be formulated to make use of the second order
equilibrium equation, plus an arbitrary succession of higher order equa-
tions obtained by differentiating the basic equation. Through the
higher order derivatives, more complete information describing the

'E variation of the forces acting during the computation time step is

2 incorporated into the solution. This is clearly seen in Equations 1-3, :
in which KTQ represents the effect of variable force at constant stiff- E;
ness, and K Q is the first term which represents the effect of 1n -step ;5

e o

structural non11nearity Equations 1-3 can be solved for Q, Q, Q , s
etc., requiring only decomposition of the mass matrix, M. These deriva- j
tives, evaluated at time t are used in the Taylor series (about tn) |
through which the solution at time tn+1 js computed. The simplest |
option, using only §, does not genera11y provide accurate problem solu-
tions. Including Q, or Q and Q , causes the results to be very accurate,
even for time steps approaching the stability limit (Atn 1/2 period) of
the formulation.
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The inadequacy of the lowest order "dynamic perturbation” method is
easily remedied by a slight change in formulation, described in Reference
15. The resulting particularly simple method, called the "acceleration-
pulse" method (Reference 15), offers probably the most cost effective of
the available solution procedures. This method achieves its excellent
accuracy by compensating errors, as described in Appendix A. Since it

is only a zero'th order method (based on ﬁ only), only simple calcula-
tions are involved, and the method does not include effects of in-step
nonlinearities. Nevertheless, because of its ease of use, economy and
good accuracy, it is felt that this method should be included in the 1
subject program development, and it is proposed to include it as a user-
optional choice, along with the Taylor series, or "dynamic perturbation”, i
method.

-

Figure 4 illustrates the acceleration pulse method and the "dynamic
perturbation" method through the 4th derivative for a simple problem.

In this problem, the approach keeping w1v is essentially exact, as
proved by solutions obtained with a set of smaller time steps. The data
illustrate elastic, plastic, material failure, and load discontinuity
induced behavior. The superiority of the higher order method, which
includes both linear and nonlinear in-step force variation, is seen to
be greatest when some degree of discontinuity of load or stiffness
behavior is present, particularly when the discontinuity is an added,
positive 1oad. Even in this cas., however, the excellent accuracy of
the acceleration pulse method, in relation to its simplicity, is clearly
seen, The Houbolt method (Figure 3) was seen to provide mediocre
results in comparison with the "dynamic perturbation" method, even for
the simple elastic case.

It should be noted that the simple, one-degree-of-freedom example may be
somewhat misleading. Judgement suggests that more severe calculation
difficulty, with attendant greater accuracy requirements, would be pres- ‘
ent in multi-degree-of-freedom problems, particularly when material ;
yield or failure occurs, resulting in growth and contraction (unloading)
of failure/yield zones. Difficulties related to this type of behavior
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have previously been encountered with the "acceleration-pulse" method
(Reference 17).

Reference 7 uses an implicit, interpolation-type, solution procedure
retaining U to solve inelastic problems of beams and shells. The method
is related to the Houbolt method. Despite the complexity and inherent
cost of the method, small time steps were apparently required to obtain
accurate solutions. This may suggest that some sort of "dynamic residual
load" concept would be a valuable asset with this, and probably other,
solution procedures. Such a residual load method will be investigated
as an option in the proposed computer program.

The goal of the proposed research is to handle nonlinear dynamic problems
with relatively large time steps (of the‘order permissible for linear
problems, governed by solution stability criteria), while using a solu-
tion procedure which only requires decomposing the mass matrix. The
Tatter assures a method which is both fast and simple. The approaches
proposed (dynamic application of static perturbation procedure, and the
acceleration pulse method, Appendix A) provide these desirable features.
In addition, the first method lends itself to the automatic computation
of time step size, based on specified accuracy criteria (using ratios of
time derivatives of solution quantities). In most problems, this can
yield considerable savings in computing costs.
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APPENDIX A

This appendix briefly describes the equations of the numerical stepping
procedures (static and dynamic) considered in this proposal. In the

equations given, the following definitions hold (matrix notation omitted).

Q = solution vector (colura matrix)

P = load vector (column matrix)
M = mass (square matrix)
Kg»Kp = secant and tangent stiffness (square matrix)
C = damping coefficient (square matrix)
At = incremental time or incremental path parameter

P1 = Toad vector which accounts for in-step internal structural
loads due to nonlinearity (column matrix)

PIK = the rate of change of K;, due to nonlinearity (third order
tensor, or "cubic matrix array")

(').("),etc. = denotes time or “path parameter" derivatives

( ). = denotes the nth time point or path parameter point

u

Static Perturbation Method (through Q)

The starting equation is the equilibrium equation

P= KSQ A
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Successive differentiations yield

P = KgQ + Ke = KqG A2
P = KTQ + KTQ 3 KTQ + P | A3
where P1 can be written as
P1 = (P1KQ) Q A4
and KT = P1K.Q A5

Solving for the derivatives of Q,

Q=K' P A6

Q=K' (p-P) A7

It is noted that only KT needs to be inverted (decomposed), even
though the equations contain the effects (through P1) of structural
nonlinearity.

The final solution is obtained by a Taylor series stepping process
in which Q ., is computed from the previous step solution Q_  and the
start-of-step derivatives (Equations A6, A7) Q> Qn

Que1 = Qy + Q, ot +1/2Q, (at)? Ag
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The procedure can be used retaining only bn, in which case it is equiva-
lent to the simple, and usually inadequate, piecewise linear Newton-
Raphson procedure. The real accomplishment of the static perturbation
methods 1ies in including the higher derivatives. It is noted that, by
retaining Pi, ﬁ'can be included, and similarly even higher derivatives
can easily be included. See Appendix B for closed form equations for
nonlinear stiffness matrices.

Dynamic Perturbation Method (through Q')

The starting equation is the second order equation of motion, with time
the path parameter,

MQ=P-KSQ-C6 A9

Differentiating, and solving for successive derivatives,

a = M-1 (P - KsQ - Cé] A10
§ =M [P - K:Q - Q- CQ] Al
in = M-? [S - KTQ - P - Ca'- ZCQ - CQ] | A2

The Taylor series about time tn gives the soTution at tn+1
. no, no(at)e o o(at)d iv gatg“
Qn+] - Qn *Qp it Qn *Q *Q, Al3
T -8 +n o (at)? iv (at)®
Qoq = Q +Q ot + G L 4 iv (et Al4

It is noted that in the dynamic case, both Qn+1 and 6n+1 are solved for,
in order that the succeeding steps can be handled as an initial vaiue
problem.

If terms are only retained through Q, the method is not accurate. The
physical reason for this is that the computed value of Qn+1 consider:
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only a constant acceleration through the step - i.e., a constant-force
step. This is not adequate for even linear analysis. If terms are
retained through 6; the method has effectively retained in-step linear
force variation, through the ter KTb. This level of approximatiorn has
been found to be very accurate for moderately nonlinear behavior.
Retention of QW includes in-step nonlinearity and further improves
accuracy for strongly nonlinear behavior.

“"Acceleration Pulse" Method

This method can be derived from Equation A9 (without the damping term) by
using a central difference formula for Q, and representing the start-of-
étep velocity 6n by a backward difference formula. The result is equiva-
lent for a rather surprising modification of Equations A13 and Al4, as
follows:

_ . ~(at)¢ L o (at)?
ey = O * O AL+ Q, 5=+ 0, °5 A5

Q;.ﬂ = (Qn+'| - Qn)/At Al6
The starred quantities indicate approximate velocities. The appearance
of the extra acceleration term in equation A15 compensates for the error
incurred by the backward difference representation of the velocity in
Equation A16. It can be rather easily seen that

. . 1=

~ O* —_— 2

Q= Q; + 7 Q,(at) A17

with the result

. . -
Quu1 = + Q, ot + 3 (at)? Q, A18

ra = (Quey - Qp)/at A19
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Equatiun A18 differs from Equation A13 retaining only through 6 in that
Qn in A18, obtained from Equation Al17, is much more accurate than the
corresponding term in Equation Al13.

The acceleratiun pulse method achieves truly outstanding accuracy, in
consideration of its simplicity, even for quite large step sizes. The
means of including damping while maintaining the internal error compensa-
tion feature of the methad is not developed as yet.

Houbolt Method (four point backward difference)

The Houbolt method uses a four point interpolation formula for Q, based
on the unique cubic polynomial passed through four equally spaced points

t 11 1

- 3
Q= Q3 * - T3 *3, =704 +30]
t 1
* K— [Qn 3° 2 Qn2 * 20y * 7 Qn]
*+ %f )* (- % Q-3 * % Qn-2 - % Qo t % Qn] A20

Difterentiating this formula to obtain 6
Equation A9 yields

N+l and Qn+], and substituting in

M+ -,2- At+C %— (bt)2eKe T Q. = %— (A%)2P .

n+l

n+l
S 3 3
+Q, (M +5480C) -Q, (2M+ ZAtC)
+ 1 1
Qup (7 M+ zateC) A21

Use of this equation requires inversion (decomposition) of the quantity

M+ 17 8t C 0 + 3 ()% ],
n+1

which makes the method implicit, as K is not generally known until
Qn+l is known. Solutions are obta1ned"3 jteration.
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APPENDIX B

This appendix briefly describes the equations required for the elemental
level forces and stiffness matrices, and their derivatives, for nonlinear

problems. In the equations given, the following definitions hold (matrix
notation omitted):

Fal
n

element freedoms (column matrix)

o = stresses or stress resultants (column matrix)

e = Lagrangian strains or curvatures (column matrix)

6 = spatial derivatives of displacements (column matrix)

D = material stress/strain relation (square matrix)

A0 = linear terms for Lagrangian strain definitions (rectangular
matrix)
Al = nonlinear terms for Lagrangian strain definition (3rd order

tensor, or “cubic matrix array")

A = terms for nonlinear Lagrangian strain rate definition
(rectangular matrix)

B = strain/displacement rate relation (rectangular matrix )
G = element shape function derivatives (rectangular matrix)
ky = element tangent stiffness (square matrix)

element nonlinear structural force terms (column matrix)

o
—
]

(+), ("), etc., denote time or “path parameter" derivatives

c27

e




TR ———y T~ T

The equations for elemental level force and stiffness quantities can be
derived in a straightforward manner, based on virtual work. The basic
relaticns are provided here. The stress/strain relation is given by

c=De¢ B1

This equation is formulated so as to inciude treatment of sandwich and
nonisotropic materials. The quantities in B1, as well as the element
displacement (shape) functions and displacement derivatives, are evaluated
at a series of numerical integration points within the element. The
displacement derivatives 0 are given by

e =06Gq B2
Strains are defined by
€= (A0 +1/2 A1 8) o B3
and strain rates by - .
€= (A0O+A108)8=RS B4
Combining B2 and B4 provides
e=AGQ:I BQ BS

The virtual work formulation leads to the expression for element nodal
forces, in terms of a numerically integrated volume integral

p = IV GAgdv = IV B odV B6

Substituting Bl and B3 into B6, and differentiating, provides the first
order (tangent stiffness) relation

c28

i i £ A & T ittt datn’: il §

i s




;‘:-kTa 87
where

ke = IV G(oAl + ADA) G dV B8

T

Here kT is a symmetric matrix due to symmetry properties of Al. Differen-
tiating B7 provides the second order relation for the element

P=kyq+ RT q kp @+ p! B9

where

pl = kT q B10a
In an expanded but perhaps more computationally advantageous form

pl = IV GD (2A1e8 + AA186)dV B108
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